

GENIE PLATFORM

Genie PGT-A Kit for PGT-A, Ploidy, and ROH

	Samples / run	Read lengths	Reads / sample		
PGT-A	96	1x100 bp	2M Reads		
PGT-A + PLOIDY, ROH	48	1x100 bp	10M Reads		

Genie PGT Plus Kit for PGT-A, PGT-SR, and PGT-M

	Samples / run	Read lengths	Reads / sample		
PGT-A, PGT-SR and PGT-M	12	2x100 bp	80M Reads		
PGT-A, PGT-SR and PGT-M	48*	2x100 bp	80M Reads		

^{*} High throughput option available on request

Genie PGT Platform is supported by

1. Genie Data Analysis software

- Single software solution for Genie PGT solutions
- Software includes a review step to confirm sample details are correct

2. Genie Sequencer

- Generates 500M reads per run to support Genie PGT solutions
- High throughput sequencing (550M to 1600M reads) option available on request

GENIE PGT-A KIT

Offers two options with varying total reads per sample for greater flexibility.

Reads	Samples Bioinformatics		Testing Content
2M	96 samples/run	Circular binary segmentation (CBS) algorithm	 Aneuploidy ≥4Mb CNVs Mosaicism ≥30% & ≥10Mb 1-4Mb known inherited CNVs
10M	48 samples/run	 Circular binary segmentation (CBS) algorithm Log-likelihood ratio (LLR) 	 Aneuploidy ≥4Mb CNVs Mosaicism ≥30% & ≥10Mb 1-4Mb known inherited CNVs Triploid Whole-chromosome level ROH

Accurate detection of CNVs:

- Validated to detect CNVs ≥ 4Mb in size.
- Can detect known CNVs ≥ 1Mb in size.
- Can detect mosaicism ≥30% at a resolution of ≥10Mb.

Large-scale Randomized Clinical Trial with Genie PGT-A Solution.

4 years

6 institutions

1482 couples

6282 embryos

- 1,672 positive, 4,483 negative for aneuploidy.
- 381 positive embryos underwent FISH with 100% concordance (Kappa=1).
- 1,162 negative embryos transferred and 750 confirmed pregmancy.
- 291 women who had embryo transfer received karyotyping, **100**% concordance (Kappa=1).

FISH verification results of positive samples and karyotype analysis results of negative samples are consistent with the detection results of this kit, and the accuracy, sensitivity and specificity are 100%, with good detection consistency.

Large-scale clinical data from several assisted reproduction centers in China.

Data available upon request from manufacturer.

Use of Genie PGT-A showed an improved clinical pregnancy rate.

Clinical statistics on pregnancy rate and miscarriage rate in a single centre using Genie PGT-A Kit.

Average Female Age	Average Number Eggs	Percent Euploid Embryos	Thawed Graft Cycle	Clinical Pregnancy Rate	Sustained Pregmancy Rate
37.34±4.37	11.24±7.16	40.7% (327/803)	112	75.89% (85/112)	64.29% (72/112)

PGT follow-up data (2018-2022) showed a **clinical pregnancy rate of 75.89%** in those who underwent PGT-A testing.

- Of the **803** blastocysts tested by the Genie-PGT-A kit, **327 (40.7%)** were haploid embryos.
- Of 112 thawed transplant cycles, 85 (75.89%) resulted in clinical pregnancies and 8 (9.41%) had early miscarriages.
- The sustained pregnancy rate of 64.29% is much higher than that
 of conventional IVF cycles.

PGT-A data from a hospital in Shenyang, Liaoning, China. Data available upon request from manufacturer.

GENIE PGT PLUS

Comprehensive PGT solution: A single workflow for combined PGT-A, PGT-SR and PGT-M.

- Patented sample preparation method requiring only 1/10th of 30x
 WGS data for analysis.
- Genie PGT plus reports Kinship, Mosaicism, ROH, Ploidy and CNV in addition to linkage analysis.
- Where available, the SNP sequence (A, T, G and C) is reported by the software.
- Genie PGT plus detects reciprocal and Robertsonian translocations including inversions Consanguinity and UPD.
- Haplotyping can be done without a proband (reference) when there are more than 5 embryo samples in an analysis.
- All available SNPs are Key SNPs as the non-informative alleles are also being sequenced.

CONTENT	GENIE-PLUS
Total number of SNPs available	1,000,000
Average No. of SNPs in each 2Mb Window	417.5
SNP locus	Stochasticity
No. of informative SNPs	75524
Ratio of ≥2 Informative SNPs in 1 Mb Window	98.69
Sensitivity for Mosaic CNV	High
Sensitivity for ROH	High
Kinship	Yes

GENIE PGT PLUS VALIDATION

In September 2022, **REPRODUCTIVE GENETIC HOSPITAL OF CITIC-XIANGYA** published an article on Genie PGT-Plus.

By retrospectively analysing **188 embryonic samples** from **43 families**, Genie platform revealed **100% concordance** with the available results obtained from reference methods, including PGT-A, PGT-M, PGT-SR and PGT-HLA.

Summary of samples used in this study

DETECTION	FAMILIES	EMBRYOS
PGT-A+SR	12	115
PGT-A+M/HLA	7	26
PGT-A+M+SR	3	26
1PN	12	12
Suspected triploid	9	9
TOTAL	43	188

Xie P, et al. Hum Reprod. 2022;37(11):2546-2559.

Higher accuracy of CNV detection Detection of 1-4Mb of pathogenic CNV.

A 1.40Mb deletion was detected by Genie PGT-A in the chr17p12 region, involving 9 protein-coding genes. Among them, 3 are pathogenic genes recorded in OMIM (COX10, PMP22, and TEKT3).

Detects Origin of Aneuplodies, Contamination and UPD

Genie PGT solution uses **Linkage Disequilibrium (LD)** to identify the number of haplotypes inherited from each parent.

Both Parental Haplotype (BPH), refers to both haplotypes from the same parent.

Single Parental Haplotype (SPH), refers to one haplotype from one parent.

Log-likelihood ratio, the likelihood of the reads in the sample containing BPH and/or SPH for each parental haplotypes

In a normal diploid sample, the LLR is 0, due to the presence of SPH from each parent. When the LLR is >0, the likelihood of BPH from at least one parent is higher, i.e., the region may contain three haplotypes.

GENIE PGT ANALYSIS SOFTWARE

A single software solution for Automated PGT analysis & reporting.

- Genie Software has 8 CNV annotations, including UCSC, NCBI, DECIPHER, DGV and ClinGen.
- Genie analysis software supports both hg19 and hg38 as the reference databases for data analysis.
- Analysis Parameters can be optimised as per user requirement (eg, define mosaic percentages).
- Genie analysis software supports customised report generation.

PGT Plus: Genome-wide SNP coverage enables better haplotyping

The proportion of windows containing two or more informative SNPs for haplotyping at different data sizes

The error rate of Genie PGT-Plus at different data sizes

With 80M reads per sample, we are able to get 1M SNPs for

haplotyping. The proportion of windows containing two or more informative SNPS for haplotyping was almost saturated at 80M (~97.81%). Meanwhile, the genotyping error rate was stabilised at a low level (2.19%).

Xie P, et al., Hum Reprod. 2022; 37(11):2546-2559.

PGT Plus: Deep sequencing enables the detection of nucleotides (A, T G and C) in SNPs

c	NP	Fem	nale	Ma	ale	Prob	and
3	INF	M0	M1	F0	F1	M1	F1
chr19	13129932	Α	AT	AT	AT	AT	AT
chr19	13296650	C	С	C	T	С	T
chr19	13312377	G	G	T	G	G	G
chr19	13312429	С	С	T	C	С	C
chr19	13313232	С	G	G	G	G	G
chr19	13326140	T	G	G	G	G	G
chr19	13326155	С	T	Т	T	T	T
chr19	13336705	С	T	T	T	T	T
		Pathog	genic variation	(chr19:13346	6507)		
chr19	13368588	G	Α	G	G	Α	G
chr19	13391286	С	С	T	C	С	C
chr19	13396110	T	T	C	T	T	T
chr19	13404415	С	С	C	T	С	T
chr19	13433348	С	C	T	C	С	C
chr19	13442779	G	G	Α	G	G	G
chr19	13442795	G	G	C	G	G	G
chr19	13475028	T	T	C	T	T	T
chr19	13492857	С	С	G	C	С	C
chr19	13496908	Т	T	C	T	T	T

M0 for female normal chromosome.

M1 for female risk chromosome.

FO and **F1** for male normal chromosome.

Sanger sequencing

The haplotype results were consistent with those verified by Sanger sequencing.

PGT Plus: Genome wide Linkage Analysis is supported by the exact nucleotides (A, T, G and C)

The SNPs detected with Genie PGT plus can be linked for genome-wide SNP analysis and haplotype construction.

PGT Plus provides the number of SNPs supporting the haplotyping results

Paternal and Maternal SNP Table:

the number of SNPs supporting/unsupporting the haplotyping in the region of interest and 2 Mb flanking regions on both sides.

Haplotype QC

SERPINA1	Paternal SNPs				Maternal SNPs			
chr14:94844947-94847262	Support Unsupport		ipport	Support		Unsupport		
Region	key	Non-Key	key	Non-Key	key	Non-Key	key	Non-Key
Left Flanking(5')	13	7	0	0	24	18	0	0
Main	0	0	0	0	0	1	0	0
Right Flanking(3')	20	23	0	0	48	28	0	1
Count	33	30	0	0	72	47	0	1

1q23.1 chr1:155500000-160100000		Paternal SNPs				Maternal SNPs			
		-		-	Support		Unsupport		
Region	key	Non-Key	key	Non-Key	key	Non-Key	key	Non-Key	
Left Flanking(5')					19	12	0	1	
Main					85	28	4	2	
Right Flanking(3')					14	17	1	0	
Count					118	57	5	3	

PGT Plus provides Kinship graph (Sibling QC)

The **green line** represents the first degree of kinship. The **red line** represents unrelatedness.

- Identity By Descent (IBD): a concept used in genetics to measure the proximity of kin pairs.
- Family relationships are examined by estimating kinship coefficients and inferring IBD for all individuals in pairs.

Discover more

Please refer to the instructions for use.

For further information, please contact your Service Representative or visit:

www.geneabiomedx.com